ImmuLisa™ Procedure at a Glance

1. **Prepare Dilutions of Specimens**
 - Pipette 100 µL of Specimens, Calibrators and Controls into Microwells
 - Incubate 30 min. at Room Temperature
 - Wash Microplate 4x

2. **Integrate 100 µL of Antigen into Microwells**
 - Incubate 30 min. at Room Temperature
 - Wash Microplate 4x

3. **Integrate 100 µL of Substrate Solution into Microwells**
 - Incubate 30 min. at Room Temperature
 - Pipette 100 µL of Stop Solution into Microwells
 - Read Absorbance at 405 nm

ImmuLisa™ Anti-ssDNA Antibody ELISA

Intended Use

An enzyme linked immunoassay (ELISA) for the detection and semi-quantitation of IgG antibodies to single stranded DNA (ssDNA) in human serum.

Summary and Explanation

Antinuclear antibodies (ANA) are found in various autoimmune diseases. ANA's include antibodies to antigens of the nucleus such as to DNA, histone and various extractable nuclear antigens such as RNP, Sm, SS-A and SS-B. Three specificities occur with anti-DNA antibodies. These include:

1. anti-dsDNA antibodies that react only with dsDNA
2. anti-ssDNA antibodies that react with ssDNA
3. anti-ds/ssDNA antibodies that react with both dsDNA and ssDNA.

Of these three types, anti-dsDNA antibodies are characteristic of systemic lupus erythematosus (SLE). They rarely occur in other autoimmune disorders. Anti-ssDNA antibodies are found in both rheumatic and non-rheumatic diseases. However, they occur with the highest frequency in patients with SLE and scleroderma. A higher prevalence of anti-ssDNA antibodies has been associated with scleroderma patients with more extensive and active lesions.

Principles of Procedures

The test is performed as a solid phase immunoassay (ELISA). Microwells are coated with ssDNA antigen followed by blocking the unreacted sites to reduce non-specific binding. Controls, calibrators and patient serum samples are incubated in the antigen coated wells which allows specific anti-ssDNA antibodies present in the serum to bind. Unbound antibody and other serum proteins are removed by washing the microwells. Bound antibodies are detected by adding an enzyme labeled anti-human IgG conjugate to the wells. Unbound conjugate is removed by washing. Specific enzyme substrate (pNPP) is then added to the wells and the presence of antibodies is detected by a color change produced by the conversion of pNPP substrate to a colored reaction product. The reaction is stopped and the intensity of the color change, which is proportional to the concentration of antibody, is read by a spectrophotometer at 405 nm. Results are expressed in ELISA units (EU)/ml.
Storage and Preparation
Store all reagents at 2°-8°C. Do not freeze. Do not use if reagent is not clear or if a precipitate is present. All reagents must be brought to room temperature (20°-25°C) prior to use.
When stored at 2°-8°C, the reconstituted wash buffer is stable until the kit expiration date. Reconstitute the wash buffer to 1 liter with distilled or deionized water.
Coated microwell strips are for one time use only.

Precautions
All human derived components used have been tested for HBsAg, HCV, HIV-1 and 2 and HTLV-I and found negative by FDA required tests. However human blood derivatives and patient specimens should be considered potentially infectious. Follow good laboratory practices in storing, dispensing and disposing of these materials.
WARNING - Sodium azide (NaN₃) may react with lead and copper plumbing to form highly explosive metal azides. Upon disposal of liquids, flush with large volumes of water to prevent azide buildup. Sodium azide may be toxic if ingested. If ingested, report incident immediately to laboratory director or poison control center.
Instructions should be followed exactly as they appear in this kit insert to ensure valid results. Do not interchange kit components with those from other sources other than the same catalog number from IMMCO DIAGNOSTICS. Follow good laboratory practices to minimize microbial and cross contamination of reagents when handling. Do not use beyond expiration date on the label.

Materials provided
ImmuLisa-ssDNA ELISA
Kit contains sufficient reagents to perform 96 determinations.
12 x 8 Ready to use Microplate with individual breakaway microwells coated with ssDNA antigen.
1 x 1.5 ml *Ready to use Positive Control (red cap). Contains human serum positive for anti-ssDNA antibodies. The expected concentration range in EU/ml is printed on the label.
1 x 1.5 ml *Ready to use Negative Control (white cap). Contains human serum.
4 x 1.5 ml *Ready to use set of 4 Calibrators: Calibrator A (green cap), Calibrator B (violet cap), Calibrator C (blue cap) and Calibrator D (yellow cap). Human serum containing antibodies to ssDNA antigen. Concentrations in EU/ml are printed on the labels.
2 x 60 ml *Ready to use Serum Diluent. Color coded blue.
1 x 12 ml *Ready to use Enzyme Substrate. Contains pNPP. Protect from light.
1 x 12 ml Ready to use Stop Solution.
2 vials Powder Wash Buffer. Reconstitute to one liter each.
1 x extra Frame Holder
2 x Protocol Sheets
*CAUTION - Contains <0.1% NaN₃

REFERENCES
Materials Required But Not Provided
- Deionized or distilled water
- Squeeze bottle to hold diluted wash buffer
- Pipettes capable of delivering 5 µl to 1000 µl
- Disposable pipette tips
- Clean test tubes 12 x 75 mm and test tube rack
- Timer
- Absorbent paper towels
- Microplate reader capable of reading absorbance values at 405 nm. If dual wavelength microplate reader is available, the reference filter should be set at 600-650 nm.
- Automatic microplate washer capable of dispensing 200 µl

SPECIMEN COLLECTION AND HANDLING

Only serum specimens should be used in this procedure. Grossly hemolyzed, lipemic or microbially contaminated specimens may interfere with the performance of the test and should not be used. Store specimens at 2°- 8°C for no longer than one week. For longer storage, serum specimens should be frozen. Avoid repeated freezing and thawing of samples.

PROCEDURE

Procedural Notes
- Before starting with the assay read carefully the product insert.
- Let serum specimens and test reagents equilibrate at room temperature before starting with the test procedure. Return all unused specimens and reagents to refrigerator immediately after use.
- All dilutions of the patient samples should be prepared prior to starting with the assay.
- Good washing technique is critical. If washing is performed manually, adequate washing is accomplished by directing a forceful stream of wash buffer with a wide tip wash bottle across the entire microplate. **An automated microplate washer is recommended.**
- Use a multichannel pipette capable of delivering 8 wells simultaneously. This speeds the process and provides for a more uniform incubation time.
- For all steps, careful control of timing is important. The start of all incubation periods begins with the completion of reagent addition.
- Addition of all samples and reagents should be performed at the same rate and in the same sequence.
- Remove required microwell strips from the pouch and carefully reseal the pouch to prevent condensation in the unused wells. Return pouch immediately to refrigerator.
Test Method

Step 1 Let all reagents and specimens equilibrate at room temperature.

Step 2 Label protocol sheet to indicate sample placement in the wells. It is good laboratory practice to run samples in duplicate.

Step 3 For a qualitative determination use only the Ready to Use Low Calibrator D (vial with yellow cap).

or For a semi-quantitative determination use the Ready to Use Calibrators A through D as depicted in the sample layout below.

Step 4 Prepare a 1:201 dilution of the patient samples by mixing 5 µl of the patient sera with 1.0 ml of Serum Diluent.

Step 5 Remove the required microwells from pouch and return unused strips in the sealed pouch to refrigerator. Securely place the microwells into the extra provided holder.

Step 6 Pipette 100 µl of Ready to use Calibrators, Positive and Negative controls and diluted patient samples to the appropriate microwells as per protocol sheet.

Note: Include one well which contains 100 µl of the Serum Diluent as a reagent blank. Zero the ELISA reader against the reagent blank.

Step 7 Incubate 30 minutes (± 5 min) at room temperature.

Step 8 Wash 4x with wash buffer. For manual washing, fill each microwell with reconstituted wash buffer. Discard the fluid by inverting and tapping out the contents of each well or by aspirating the liquid from each well. To blot at the end of the last wash, invert strips and tap the wells vigorously on absorbent paper towels. For automatic washers, program the washer as per manufacturer’s instructions.

Step 9 Pipette 100 µl of Conjugate into microwells.

Step 10 Incubate 30 minutes (± 5 min) at room temperature.

Step 11 Wash all microwells as in Step 8.

Step 12 Pipette 100 µl of Enzyme Substrate into each microwell in the same order and timing as for the Conjugate.

Step 13 Incubate 30 minutes (± 5 min) at room temperature.

Step 14 Pipette 100 µl of Stop Solution into each microwell using the same order and timing as for the addition of the Enzyme Substrate. Read absorbance values within 1 hour from adding Stop Solution.

Step 15 Read absorbance of each microwell at 405 nm using a single or 405/630nm dual wavelength microplate reader against the reagent blank set at zero absorbance.

Quality Control

Calibrators, Positive and Negative Controls and a reagent blank must be run with each assay to verify the integrity and accuracy of the test. The absorbance reading of the reagent blank should be <0.3. The Calibrator A should have an absorbance reading of not less than 1.0, otherwise the test must be repeated. The Negative Control must be less than 20 EU/ml. If the test is run in duplicate, the mean of the two readings should be taken for determining the EU/ml. While performing Qualitative determinations, the optical density of the Calibrator D must be greater than that of the negative control and lesser than the absorbance of the positive control. For semi-quantitative determinations, the positive control must give values in the range stated on the vial.

RESULTS

Calculations

The concentrations of the patient samples can be determined by either of two methods:

1. QUALITATIVE DETERMINATION

 \[
 \text{Abs. of Test Sample} \times \text{EU/ml of Calibrator D} = \text{EU/ml Test Sample}
 \]

2. SEMI-QUANTITATIVE DETERMINATION

Plot absorbance of Calibrator A through D against their respective concentration on a linear-linear graph paper. Plot the concentration in EU/ml on the X-axis against the absorbance on the Y-axis and draw the best fit curve. Determine the concentrations of the patient samples from the curve against its corresponding absorbance value.